

Sciences de données en santé

Objectifs

L'objectif principal du programme est de promouvoir une utilisation éclairée des big data biomédicales en formant des professionnels pour qu'ils acquièrent la sémantique des analyses quantitatives de pointe et ainsi, mieux appréhender les données santé massives et complexes.

Compétences génériques et transversales :

- Comprendre l'impact des données biomédicales sur la recherche et la pratique médicale
- · Aborder les défis avec curiosité, esprit critique et créativité
- Participer à un projet qui mobilise des compétences pluridisciplinaires : conception, pilotage, coordination d'équipe, mise en œuvre et gestion, évaluation, diffusion

Compétences spécifiques :

- Décrire, structurer et résumer une grande quantité d'informations, connaître les analyses mathématiques et statistiques appropriées aux traitements de grands jeux de données
- Intégrer plusieurs sources de données pour établir des associations et permettre ainsi une meilleure interprétation des processus biologiques
- Utiliser des techniques de visualisation et de représentation des données biologiques et des résultats pour une lecture synthétique, et une interprétation aisée
- Identifier, sélectionner et analyser avec esprit critique diverses ressources spécialisées pour documenter un sujet et synthétiser ces données en vue de leur exploitation
- Maîtriser et appliquer la réglementation générale concernant la protection des données personnelles

▶ Public concerné & Pré-requis

- Professionnel de santé (médecin, pharmacien, dentiste, sagefemme, infirmier-e en pratique avancée, interne, kinésithérapeute)
- Doctorants, ingénieurs, chercheurs, Docteurs en sciences (PhD)
- Licence sciences (mathématiques, statistiques, chimie informatique, biologie)

Compétences requises :

· Maîtrise de l'anglais (certains cours sont dispensés en anglais)

▶ Évaluation de la formation

100% sur évaluation écrite pour les participants à au moins 75% des enseignements.

1 session + 1 session de rattrapage

Moyens pédagogiques

La formation est dispensée par des enseignants chercheurs et des professionnels sous forme de cours interactifs et d'échanges, d'études de cas selon des modalités hybrides pour partie en présentiel et pour partie en distanciel.

▶ Responsables pédagogiques

BEKRI Soumeya

Professeur des Universités – Praticien Hospitalier UFR Santé
02 32 88 81 24
soumeya.bekri@chu-rouen.fr
du.datascience@univ-rouen.fr

TEBANI Abdellah

Maître de Conférences des Universités – Praticien Hospitalier UFR Santé 02 32 88 81 24 abdellah.tebani@chu-rouen.fr

DARMONI Stefan

Professeur des Universités – Praticien Hospitalier UFR Santé
02 32 88 88 29
stefan.darmoni@chu-rouen.fr

Renseignements	Unité Mixte de Développement Professionnel Continu en Santé Tél. : 02 35 14 60 79 sante.fc@univ-rouen.fr
	Conseillère formation : Marie-Laure CAUDRON Université de Rouen Normandie - CFCA Bâtiment Michel Serres, rue Thomas Becket, 76821 Mont-Saint-Aignan Cedex Candidature : https://ecandidat.univ-rouen.fr
Calendrier	Septembre à juin
Durée et organisation	79h dont 9 jours en présentiel et 6 jours en distanciel, le vendredi et samedi hors vacances scolaires
Financement	FIF PL sur demande
Lieu	UFR Santé de l'Université de Rouen Normandie Plateforme Universitice

Sciences de données en santé

Programme

UNIT 1: Introduction to Data Science in Healthcare

- · Historical perspective of data-driven medicine
- · Overview of the Healthcare data ecosystem
- · Open science, data sharing, privacy and ethical aspects
- · Introduction to Healthcare Data Management

UNIT 2: Design, Data Analysis and Reporting with R

- · Report and Visualization of Baseline Characteristics
- · Interpretation of Multiple Linear and Logistic regression
- Data Structure Visualization (heatmap and PCA)
- · Data Analysis Project

UNIT 3: Clinical Informatics and Data Management

- · Essentials of Medical Informatics: Digital Health & Telemedicine
- · Biomedical Bibliographic Databases: PubMed, Google scholar, etc
- · Electronic Health Records & Health Data Warehouses
- · Clinical Decision Support Systems
- · Ontology and knowledge representation
- · Text mining, Natural Language Processing and Machine learning

UNIT 4: Genomics Medicine

- General principles of next generation sequencing and other omics (RNAseq, ChIPseq, Methylseq etc.)
- · Data processing in genomics: file types, main tools and pipelines
- Data processing in omics: informatics management: workflows, computing resources, integration in pipelines
- Application of big data in genomics: casecontrol analyses, principles, quality controls & main methods
- · NGS in clinical practice

UNIT 5: Medical Imaging

- From microscopic image to wholebody analysis, an overview of medical imaging
- Medical imaging standards (DICOM, PACS, anonymization and image transfers)
- The major fields of image processing (production, quantification, classification, segmentation, prediction, monitoring)
- · Introduction to machine learning and deep learning
- Current medical imaging applications of machine learning and deep learning
- · Deep learning: example of a practical application

UNIT 6: Networks and Systems Medicine

- · Introduction to Systems Biology
- · Systems Biology: applications to liver diseases
- · Epidemiology in the data-driven medicine era
- · Networks and systems biology
- · Network medicine and drug repositioning
- · Genome-scale metabolic modeling: basics and applications
- · Microbiome in human health and disease

UNIT 7: Medical Simulation

· Introduction to Medical Simulation

