Niveau d'étude
BAC +5
Composante
UFR Sciences et Techniques
Description
The course is intended to give the students a fairly comprehensive view of fundamentals and techniques for combining multiple classifiers or machine learning models.
Objectifs
To master the art of combining classifiers.
Pré-requis obligatoires
- UE Apprentissage Automatique du S1
- UE Théories et Algorithmes d’Apprentissage Automatique du S2
Contrôle des connaissances
Contrôle continu
Compétences visées
- Multiple Classifiers Systems (motivation, terminology, applications, taxonomy of fusion methods: sequential, parallel, hybrid architectures)
- Combining/fusion operators (class-based, rank-based, measure based; parametric, non parametric; stacking)
- Ensemble of classifiers (diversity in ensembles, cross-validated committees, bagging, boosting, random subspaces, ECOC, random forests and variants, XGBoost)