

Physique statistique 1

Niveau d'étude BAC +3

Composante UFR Sciences et Techniques

Présentation

Description

- 1. Introduction : représentation d'un gaz, modèle du gaz parfait, ordres de grandeurs
- 2. Notion de fonction de distribution
- 3. Equilibre et fonction de distribution de Maxwell
- 4. Moyennes d'une grandeur sur l'espace des vitesses Température
- 5. Bilan d'une grandeur extensive Flux et densité de flux Pression dans un gaz
- 6. Collisions interparticulaires Potentiel d'interaction
- 7. Section efficace de collision élastique
- 8. Fréquence de collisions Libre parcours moyen
- 9. Equilibre thermodynamique local et coefficients de transport
- 10Fonctions de partition (rotation, vibration, translation)
- 11Entropie statistique de Boltzmann
- 12Limites de la statistique de Boltzmann

Objectifs

Faire le lien entre les phénomènes microscopiques et les grandeurs macroscopiques au sein d'un gaz. Comprendre le rôle des collisions dans l'évolution spontanée d'un gaz vers l'équilibre.

Pré-requis obligatoires

Thermodynamique phénoménologique, Mécanique du point, Atomistique, Calcul d'une moyenne, Calcul intégral et différentielle, Vecteurs.

Contrôle des connaissances

Contrôle Continu

Compétences visées

- Savoir calculer un vecteur densité de flux puis un flux à l'aide d'une fonction de distribution.
- Savoir réaliser un bilan.
- Savoir traiter statistiquement un grand nombre de particules.
- Savoir résoudre un problème impliquant un gaz.

Infos pratiques

Lieu(x)

> Saint-Étienne-du-Rouvray