• Votre sélection est vide.

    Enregistrez les diplômes, parcours ou enseignements de votre choix.

    UE 1.1 Medical Image Analysis

    • Niveau d'étude

      BAC +5

    • Composante

      UFR Sciences et Techniques

    Description

    Medical image acquisition & features

    Methodology design in medical image analysis

    Medical image segmentation

    • binary vs semantic vs instance segmentation
    • active contours (snake)
    • evaluation metrics for medical image segmentation
    • more "old school" (ie unsupervised techniques)

    Deep learning in medical image segmentation

    • from classification networks to segmentation networks
    • pioneering networks: FCN, UNet
    • various architectures
    • loss functions (cross-entropy, dice)
    • mitigate the need for labeled data
      • data augmentation in the training set: with geometric transformation or generative models
      • use weakly labeled or unlabeled data with weakly supervised learning, semi-supervised learning

    Image registration

    Characterization of images

    • Characterization methods (Statistical attributes, Co-occurrence matrix, Mutlifractal analysis, Filtering, Representation of shape
    • Feature extraction with auto-encoder

    Multimodal medical image fusion

    • Information Fusion (Fuzzy sets, Belief functions, Probability theory)
    • Deep learning based fusion
    Lire plus

    Objectifs

    The objective is to introduce recent tools for medical image analysis.

    Lire plus

    Pré-requis obligatoires

    Basic methods in image processing.

    Lire plus

    Contrôle des connaissances

    Contrôle continu

    Lire plus

    Compétences visées

    Students will be able to propose methods to solve problems of outcome prediction, image classification and segmentation.

    Lire plus

    Liste des enseignements